
NOTATION 

V, liquid velocity averaged over cells equidistant from the column axis; ~, V G, mean 
mass flow velocities of the liquid and gas, respectively; Vk, liquid local velocity in the 
k-th measuring cell obtained by dividing the liquid mass flow rate through this cell by its 
area; S 2, empirical dispersion. 
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TOWARD A THEORY OF TRANSPORT PROCESSES IN 

BROWNIAN SUSPENSIONS 

A. Yu. Zubarev UDC 53].582.7 

Fluctuations in dispersed phase concentration increase the particle gradient 
diffusion coefficient and the effective viscosity of the suspension. 

A large range of literature has been dedicated to the definition of effective proper- 
ties of concentrated suspensions. A review of studies of the rheology of such suspensions 
can be found in [i]. The influence of collective effects on the gradient diffusion coef- 
ficient of Brownian particles in weak concentration suspensions was evaluated in [2-5], 
while in [6] the theory of [2] was generalized to concentrated suspensions. In all studies 
known to the present author the concentration of the dispersed phase was taken as a determin- 
istically specified quantity, and the possibility of its fluctuation over time and sp~ce was 
neglected. However in suspensions in which the particles perform intense Brownian motion 
such fluctuations do occur and their amplitude increases with increase in external noise 
disturbance. Moreover, from the well known analogy between processes of colloid coag~11ation 
and molecular gas condensation [7] one can expect intense increase in fluctuations and their 
correlation radius in colloidal systems upon approach to the critical coagulation point, 
which within the framework of the indicated analogy corresponds to the critical gas-liquid 
phase transition point [8-10]. 

Below we will evaluate the effect of fluctuations in dispersed phase concentration on 
the effective diffusion coefficient of suspension particles and effective viscosity. A con- 
structive description of the macroscopic behavior of suspensions can apparently only be given 
within the framework of the continuum approximation, which becomes inadequate if the ampli- 
tude of the fluctuations in porosity becomes comparable to the mean value of that quartity, 
while the correlation radius becomes comparable to the dimensions of the region occupied by 
the suspension. Therefore below we will assume the value of the fluctuations to be lcw in 
comparison to the mean concentration of the dispersed phase. We note that this limitation 
of smallness of the fluctuations is caused not only by the requirements of the continuum ap- 
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proximation, but also by the existing level of development of the theory of stochastic pro- 
cesses. 

Gradient Diffusion Coefficient. We will consider a system of identical spheres of 
radius a, distributed homogeneously on the average within a Newtonian liquid with viscosity 
N0- In accordance with [2] we use the Langevin equation describing motion of an individual 
particle in a medium fixed as a whole: 

4 dU U B O~ -E, E-----vN; N=R v-~ ;  v ~a  ~. (1) 
d t  B I - - R  OR 3 

Here ~ is the chemical potential of the particle, as estimated, for example, in [2, 6], B is 
the hydrodynamic mobility of the particle under crowded conditions, R is the fluctuating 
volume concentration of the dispersed phase, which on the scale of some representative vol- 
ume containing a large number of particles is assumed to be spatially homogeneous. The de- 
terministic dependence of B on R has been evaluated in many studies (see, for example, [ii]). 
Apparently B has been calculated most precisely in [ii] using the general theory of [12]. 
Exact solution of the problem formulated in [Ii] is possible only by numerical methods, but 
good correspondence to experiment was achieved by the approximate expression 

B = K ( R )  , (2) 
6n~oaL  ( R ) 

where K is defined by: 

K= 0"08L2+0 '96L+0 '46 (l--R), (3)  
0,58L + 0,92 

and L is a positive root of the equation: 

L- - - - l+  l ' 6L3+126L~+12"4L+2"56  R. (4)  
1.6L 2 + 6,25L + 3.82 

I f  t he  d i s p e r s e d  phase  c o n c e n t r a t i o n  i s  r e l a t i v e l y  low (R 2 0 .25)  the  e x p r e s s i o n  [11] 

B =  (1 - -  R)(1 - -  2.5R) 

6~0 a 

w i l l  p roduce  s a t i s f a c t o r y  r e s u l t s .  

Introduction of the chemical potential > in Eq. (i) is justifiable only if the local 
equilibrium principle is satisfied. This principle requires that at all scales of time of 
interest to us in the representative volumes, local equilibrium is achieved, which we will 
assume below. In combination with the requirement of homogeneity of R in the representative 
volume this means that only coarse scale fluctuations including many particles will be stud- 
ied. Estimates indicate that for real systems inhmogeneity diffusion relaxation times even 
at the scale of a are much greater than particle velocity viscous relaxation times (Bm) -I, 
so that in the future we will take dU/dt=O in Eq. (i). 

Considering this condition, we rewrite Eq. (i) as: 

U = -- OE, O B 0~ (5) 
1 - -  R OR 

By definition the local value of the diffusion flux density J is equal to: 

J = NU = - -  ONE.  ( 6 )  

Generally speaking the quantities figuring in Eq. (6) have a stochastic character. We 
will represent them in the form of a mean value denoted by the corresponding small letter 
and a fluctuation component, denoted by a prime, for example J=j+J', R = p + R'. Averag- 
ing the first identity of Eq. (6) over all possible states of the set of particles, and con- 
sidering the relationship between R and N of Eq. (i), we obtain 

j -~  ( J )  =nu--}-v - I ( R ' U ' ) ,  tT--pv -l, (7) 

where the angled brackets indicate the operation of averaging and it is considered that the 
mean of the fluctuations is equal to zero. 

From the first equation of Eq. (5) we obtain 

u = - - g e +  < O'E' ) ( 8 )  
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and considering that U'=U--u, we have 

U' = - - G e - - g g ' .  (9)  

Substituting Eqs. (8) and (9) in Eq. (7), we arrive at the following representation for 
the mean flux: 

j = - - n g e - - v  -~ <R'G' > e - - : z  ( G 'E '>  --gv<( R'E '  >. (10)  

Assuming G t o  be a d e t e r m i n i s t i c  f u n c t i o n  o f  t h e  random q u a n t i t y  R ( t h i s  i s  p o s s i b l e ,  
i f ,  as  a s sumed ,  t h e  o n l y  v a r i a b l e  f l u c t u a t i n g  i s  R) ,  we f i n d  g and G ' ,  f o r  wh ich ,  u s i n g  t h e  
c o n d i t i o n  R ' / p  << 1, we w r i t e  

~ I " ' O R  ~ ~=o" (11)  

Averaging Eq. (ii), we have 

g-~ < G(R) > ~ G(p)-}----~ G (~ < R '~ >. (12) 
2 

Considering that G' = G - g, subtracting gq. (12) from EQ. (ii), and neglecting the 
small quantity G (2) <R'2>, we obtain 

G ' ~  R'G (1). (13)  

Substituting Eq. (13) in Eq. (ii), we arrive at a representation for the mean f2ux j, 
containing the correlators <R'R'> and <R'EI> Using the methods of the theory of random 
functions [13] and the definition E' = v-ZVR ', it can be shown that <R'E'> = 0. As a result 
we have 

j=--D~e, D~=D ~ (14) 

where 

1 ) R'R' D ~ D ' =  G(1)-~-~-pG (~) < >. (15)  

The d e r i v a t i v e s  G (1 )  and G (2 )  can  be c a l c u l a t e d  f rom t h e  d e f i n i t i o n  o f  G in  Eq. ( 5 ) ,  
t h e  e x p l i c i t  d e f i n i t i o n s  o f  B in  Eqs .  ( 2 ) - ( 4 ) ,  and e x p r e s s i o n s  f o r  ~ which  were  o b t a i n e d  f o r  
a s y s t e m  o f  r i g i d  s p h e r e s  in  [ 6 ] ,  w h i l e  f o r  i n t e r a c t i n g  c o l l o i d a l  p a r t i c l e s  t h e y  can  be de -  
t e r m i n e d  f rom t h e  e q u a t i o n s  o f  s t a t e  o f  d e n s e  g a s e s  [9]  by a method p r o p o s e d  in  [ 6 ] .  We 
w i l l  n o t  p r e s e n t  e x p l i c i t  e x p r e s s i o n s  f o r  G ( t )  and G (2 )  b e c a u s e  o f  t h e i r  c u m b e r s o m e n e s s .  
C a l c u l a t i o n s  show t h a t  f o r  a s y s t e m  o f  r i g i d  s p h e r e s  t h e  sum G (1 )  + ( 1 / 2 ) 0 G ( 2 )  t a k e s  on o n l y  
p o s i t i v e  v a l u e s .  The c o r r e l a t o r  < R ' R ' >  in  i t s  p h y s i c a l  mean ing  o f  t h e  mean s q u a r e  o f  t h e  R 
f l u c t u a t i o n s  i s  n o n n e g a t i v e .  T h e r e f o r e  p o r o s i t y  f l u c t u a t i o n s  i n c r e a s e  t h e  d i f f u s i o n  : o e f -  
ficient of neutral particles. For the final definition of D' it is necessary to calculate 
the correlator <R'R'>. It will be shown below that the effective viscosity of the suspen- 

sion qe is functionally dependent on <R'R'>. Therefore we will first calculate qe to the 
accuracy of this correlator and then in the final portion of the study calculate <R'R~> and 
determine explicit values of D e and qe with consideration of concentration fluctuations of 
the dispersed phase. 

Effective Viscosity of the Suspension. The relationship between the values of the dev- 
iator portions of the hydrodynamic stress tensors Ig and the shear flow velocity E can be 
written in the standard form 

= 2H(R) E. (16)  

Again  r e p r e s e n t i n g  t h e  s t o c h a s t i c  q u a n t i t i e s  in  t h e  fo rm o f  t h e  sum o f  mean and f l u c -  
t u a t i o n  c o m p o n e n t s ,  we h a v e  

~ = a + ~ ' ,  H=~- i -H ' ,  E = s + E ' ,  (17)  

w h i l e  f o r  q and H, a f t e r  m a n i p u l a t i o n s  a n a l o g o u s  t o  t h o s e  u s e d  in  d e r i v i n g  Eqs .  ( 1 2 ) ,  ( 1 3 ) ,  
we obtain 

= H ( p ) + I H  (2)<R'R'>, H'=R'H (1), (18) 
2 

where  t h e  q u a n t i t i e s  d e n o t e d  by s u p e r s c r i p t s  1 and 2 a g a i n  have  t h e  mean ing  o f  t h e  c o r r e s p o n d -  
ing  d e r i v a t i v e s  o f  H w i t h  r e s p e c t  t o  R a t  R = 0. 
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To establish the form of the quantities appearing in Eq. (18), it is necessary to have 
explicit expressions for the effective viscosity H(R). Such relationships are widely found 
in the literature (see, for example, [i]). A detailed analysis of the dependence of H upon 
R based on the exact theory of [12] was given in [ii, 14], where for a system with arbi- 
trary concentration of identical spherical particles the expression H = DoL(R) was obtained, 
while L(R) is defined by Eq. (4). For moderately concentrated suspensions (R ~ 0.25) the 
theory of [ii, 12, 14] leads to an approximate expression H = ~0(I - 2.5R) -l, coinciding 
with the well known Lundgren expression. 

Substituting Eq. (17) in Eq. (16) and averaging, we obtain 

= 2 [ ~ e + <  H ' E ' ) ] .  (19)  

Again u s i n g  Eq. (17)  in  Eq. ( 1 6 ) ,  s u b t r a c t i n g  Eq. (19)  f rom t h e  e x p r e s s i o n  t h u s  ob-  
t a i n e d ,  c o n s i d e r i n g  Eq. (18)  and n e g l e c t i n g  q u a n t i t i e s  q u a d r a t i c  in  t h e  f l u c t u a t i o n s ,  we 
a r r i v e  a t  an e x p r e s s i o n  f o r  t h e  f l u c t u a t i o n  o f  t h e  h y d ro d y n am ic  s t r e s s  

~' = 2 (mE' + H'e) = 2 (mE' + H(1)eR). (20)  

Simple estimates show that for real systems the suspension hydrodynamic perturbation 
relaxation times on the whole are much less than the diffusion dissipation times of fluctua- 
tions over these spatial intervals. Therefore we write the Navier-Stokes equations linear- 
ized with respect to fluctuations in the steady state form 

v p ' = v ~ ' ,  d ivu  = 0, (21) 

where  Y' i s  t h e  f l u c t u a t i o n  in  s u s p e n s i o n  v e l o c i t y  as  a w h o le ,  r e l a t e d  t o  t h e  components  o f  
t h e  t e n s o r  E'  in  t h e  no rma l  manner :  

E ; i = - ~  ~ ---~ - - ~ j  j ,  i, ] = x, y, z . (22)  

The goal of the following analysis is to determine the correlator <E'H'> and to estab- 
lish the form of the rheological equation of state of the suspension from Eq. (19). Below 
we will make use of the methods of correlation theory of random functions [13], in accord- 
ance with which the random quantity h(t, r) can be represented as a Fourier-Stilties inte- 
gral with Winer metric dZh: 

h(t, r) = Sef~t+fkrdzh(~, k), i = ] / - ~ -  1, (23 

while we write the correlator of the two random quantities h and s in the form 

< h (t -~ T, r ~- x) t (t, r) > : ~ ei~z+ik• h (~, k) d~dk, ( 24 

where  i n t e g r a t i o n  i s  p e r f o r m e d  o v e r  t h e  e n t i r e  f r e q u e n c y  a x i s  ~ and a l l  wave s p a c e  k. The 
s p e c t r a l  d e n s i t y  Cgh i s  r e l a t e d  t o  t h e  m e t r i c s  dZ h and dZz as  f o l l o w s :  

~ h  (o), k) d~dk : < dZhdZf ) , (25  

where  t h e  a s t e r i s k  d e n o t e s  t h e  complex  c o n j u g a t e .  

A p p l y i n g  t h e  F o u r i e r - S t i l t i e s  t r a n s f o r m  o f  Eq. (23)  t o  Eqs.  (21)  and (22)  we o b t a i n  

kdZp = kdZ~; kdZv = 0; dZz = 2(~dZE-~eH(1)dZR) ,  (26 

i (k jdZh_~kzdZvj ) ,  ], l = x, y, z; i - = 3 / ~ 1 .  dZ~ u = -~- 

In calculating Eq. (26) it was considered that the linear scale of the mean quantities 
is much greater than that of fluctuation quantities, and therefore in substituting Eq. (20) 
in Eq. (21) derivatives of H (I) and e were neglected. 

The problem now consists of determSning the tensor metric dZE, which when used in Eq. 
(24) together with the metric dZ H = H(1)dZR allows us to determine the correlator <H'E'>, 
figuring in Eq. (19), thus evaluating the effect of porosity fluctuations on the rheological 
properties of the suspension. 

For a concrete solution of such a problem it is convenient to specify the tensor e in 
the form exx = -Eyy = E(e = const), taking its remaining components equal to zero. In this 
case, after cumbersome computations we obtain from Eq. (26) 

1330 



d Z E , ~ = s  1 d Z R ,  
q k 2 k2 . 

(27) 
2H(~) k~ k. -- ky 

dZEvv = s kZ k2 -1- I dZn �9 q 

S u b s t i t u t i n g  Eq. (27) t o g e t h e r  wi th  dZ H = H(1)dZR in Eq. (25) and then  in  gqs.  (24) 
and (19) ,  a f t e r  s imple  c a l c u l a t i o n s  we o b t a i n  

o = 2 l i e s  , lie = q~ + ~', ( 2 8 )  

where q0 = H(p) ,  and 

For the final determination of q' it is necessary to calculate the spectral density 
%RR- We will note that as follows from Eqs. (15) and (24), the parameter D', defining the 
contribution of porosity fluctuations to the particle diffusion coefficient, can be defined 
in the form 

( ) D' = O (I) pO {2) SgPnRdodk. (30) 

Determination of Sp_ectral Density ~RR2_ To determine %RR we will make use of the treat- 
ment of [15] and write 

D~ 2 
oR~ = 3c F (k). (3 ~ ) 

o 2 + D~ ~ 

As in [16], the cofactor D~ + D~ -z in Eq. (31) can be obtained from point par- 
ticle models. The function F(k) introduced in [i] considers the finite dimensions of the 
particles. The constant C will be determined below. 

Using the concept of [15], we arrive at the following expression for the function F(k): 

sin 2ka -- 2ak cos 2ak 
(k) : ( 32 ) 

(2ak) a 

We no t e  t h a t  in [ t 5 ] ,  in p l a c e  of  2ak the  q u a n t i t y  k b ,  b = ap - z / a ,  was used.  I t  was 
thus  assumed t h a t  t he  c o r r e l a t i o n  r a d i u s  between p a r t i c l e  p o s i t i o n s  i s  b. However, fzom 
the  form of  the  s p h e r i c a l  p a r t i c l e  b i n a r y  d i s t r i b u t i o n  f u n c t i o n  [9, 11, 14] i t  fo l lows  t h a t  
t h i s  r a d i u s  i s  a p p r o x i m a t e l y  equa l  to  2a, which i s  c o n s i d e r e d  in Eq. (32) .  

As in [15], to determine the constant C, we calculate the mean square of the fluctua- 
tions M' of the total number of particles M in some fixed volume W. By considerations fully 
analogous to those of [15], using Eq. (32) we obtain 

( M "  > :: 8rt----~ CW.  (33) 
3v 2 

On the other hand, as is well known, the square of impurity particle fluctuations can 
be found from the following expression [8]: 

(M;> T 
- -  , m =  ( M > ,  ( 3 4 )  

c~,u/Omb .... 

where m 0 is the mean number of liquid molecules in the region under consideration, and T is 
the temperature in energy units. Considering that p = my(my + m0v0) -z (v 0 is the volune oc- 
cupied by one molecule of solvent), assuming the particles and liquid incompressible, .e., 
v, v 0 = eonst, from Eq. (34) we obtain 

.O~om ~.mo= o,o0~ ~,(1--o)m 
Hence from Eqs. (33) ,  (34) i t  follows that 

3v T 
C = ~ (35) 

8=~ (1 - -  p) 0,u/Op 

Now s u b s t i t u t i n g  Eqs. (31 ) ,  ( 32 ) ,  and (35) in Eqs. (29 ) ,  (30) and c a l c u l a t i n g  the  i n t e -  
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grals, we arrive at the following expressions for D' and q': 

D, 3 T (G(~)q_ 1 ) 
= - 8  (1--p)a~lap -2 PG(2) ' 

(36) 
= _3 r ( •  4 H(')') 

8 (1--p)0~/Op t 2 5~ ~ 

Ca l cu l a t i ons  show t h a t  H(2)/2 > (4/5D0)H(i)2 and t h e r e f o r e  q'  > 0. Thus, the  e f f e c t i v e  
viscosity of the suspension ~~ = H(p) proves to be greater than the value De, calculated 
without consideration of porosity fluctuations. This fact is possibly one of the reasons 
behind the large scattering in known experimental data on effective viscosity of suspensions 
[i, ii, 14], since in different experiments porosity fluctuations may manifest themselves 
to a different degree. 

We will now consider the behavior of the derivative 8p/Sp. If the particles interact 
as rigid spheres, the chemical potential p is a monotonically increasing function of p [6], 
and therefore 8z/Sp > 0 everywhere. However the situation changes if, as is the case in 
colloidal systems, there are attractive forces between the particles. In such a case p can 
be calculated by the methods of [6] from the equations of state of dense gases (for exam- 
ple, see [9]). Although final results are lacking, we will note that in such situations 
there exists a critical value of p at which 8Z/Sp = 0. As is evident from Eq. (36), the 
parameters D' and n' then diverge. The value of Eq. (34) also diverges, and thus the theory 
developed herein becomes inapplicable. However, in analogy to dense gases, we can expect 
the appearance of anomalies in the behavior of suspensions and colloids near the critical 
point. Theoretical analysis of the behavior of dispersions in such a situation is quite 
difficult at present, since the dynamic scaling aparatus used for determination of critical 
properties of molecular systems relies on the experimental results of [i0, 17]. But experi- 
mental studies of the behavior of suspensions and colloids near the sol-gel transition crit- 
ical point are apparently lacking. In addition study of the critical behavior of dispersed 
systems may be of interest for clarifying general principles of phase transition. 

NOTATION 

a, particle radius; D e and D ~ , effective and deterministically defined particle gradi- 
ent diffusion coefficients; E and e, random and mean values of particle concentration grad- 
ient; g, mean value of G; H, random value of suspension viscosity in some local region; k, 
wave vector; m, particle mass in Eq. (i), mean number of particles in volume W in Eq. (34); 
P, mean volume particle concentration; u and u, random and mean particle diffusion veloci- 
ties; E and ~, random and mean shear flow velocity tensor values; ~0, q~ q and Re, viscos- 
ity of dispersed liquid, deterministically determined, mean and effective viscosities of 
suspension; ~ and o, random and mean values of values of suspension hydrodynamic stress ten- 
sor; ~h, spectral density; ~, frequency. 
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DYNAMIC NONLINEAR PROPERTIES OF VISCOELASTIC 

LIQUIDS FROM THE RHEOLOGICAL FLOW CURVE 

V. G. Pivovarov, S. V. Vasil'chenko, 
and A. G. Potapov 

UDC 532.133 

A method is developed for prediction and calculation of nonlinear properties of 
viscoelastic liquids solely by measurement of tangent stresses during flow in a 
rheometer. 

A method was proposed in [i] for calculation of elastic characteristics of non-Newton- 
Jan liquids from their rheological flow curve, based on the fact that the viscosity measured 
in a rotation viscosimeter qm differs from the true inelastic viscosity Dm, due to the effect 
of the elastic properties of the liquid. The relationship between Dm and qm has the [orm 
[i] 

1 1 "c z 
lira 1] 2t @ 4Gz~l 2 ( 1 ) 

For a linear viscoelastic liquid (~t and G constant) the relationship between i/r~ and 
T 2 is linear in character and can serve to define the modulus of elasticity G, and this, the 
liquid relaxation time. In [i] good agreement between calculation results and direct mea- 
surements with a Weissenberg rheogoniometer was demonstrated. 

If the dependence of i/q~ on T 2 is nonlinear, this means that the viscosity or the mod- 
ulus of elasticity (one, the other, or both together) depends on shear velocity. In the 
"inelastic" flow region, where T 2 << 4G ~ and qm ~ ~]t (for low shear rates) one can est.~blish 
the form of qt, u and calculate the value of G(y) from Eq. (I) transformed in the following 
manner : 

( ~t12 .r 
- -  = l q -  4G------/- ( 2 )  

\ ~m' 
To evaluate the applicability of the proposed method, relaxation times were calculated 

for several polymers from their rheological flow curves as presented in [2J. The results 
obtained are presented in Table I. 

The quite satisfactory agreement of the results obtained indicates the possibility of 
using the proposed method for operative evaluation of liquid relaxation characteristic:~. 

A practical realization of this approach can be illustrated by results of calculaving 

TABLE I. 
for Polymers 

Sprigs 
Polymer model 

PEVP 

PENP 
PS 
PP 

Comparison of Calculated Relaxation Times 

78,96 
2,80 
1,85 
1,03 

Meister 
model 

23,27 
O, 94 
1,72 
0,72 

I Present 
Bog model method 

29,70 ] 27,55 
5,82 4,21 
1,02 1,4! 
0,94 1,25 

I 
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